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Abstract. Free-standing smectic films are transferred onto a solid substrate by the method of Maclennan.
When examined with an atomic force microscope, the transferred films show a large number of small holes.
In order to explain the genesis of these defects, the transfer process is analysed both experimentally and
theoretically. In particular, shapes of free films spanned between the flat substrate and a circular frame
are calculated and it is shown that during the transfer process films are submitted to an increase of their
surface area. During experimental studies of the transfer process, stable and unstable forms of the catenoid-
shaped free films, spanned between the substrate and the circular frame, are observed. Their existence is
explained theoretically.

PACS. 61.30.-v Liquid crystals – 68.15.+e Liquid thin films

1 Introduction

Smectic liquid crystals form easily the so-called free stand-
ing films which attracted much attention because of their
remarkable structural features and unusual physical prop-
erties [1]. In particular, it has been shown that it is possi-
ble to draw films of perfectly uniform thickness that can
range between two and several thousands molecular lay-
ers. Maclennan et al. [2] proposed a method of transfer of
such highly perfect films onto a solid substrate with the
aim to make them more convenient for applications. This
method uses the possibility of inflating smectic films as it
has been shown for the first time by Oswald [3]. It consists
in disposing the substrate (a mica sheet or a glass plate)
close to the smectic bubble in a way that it touches the
substrate and adheres to it.

In the present work (Sect. 2), we report on first AFM
studies of films transferred by the Maclennan method and
point out that during the transfer process many tiny holes
are open in the film. As a possible explanation of the gen-
esis of these defects we propose an abrupt increase in the
surface area of the film when it adheres to the substrate.
In Section 3, we calculate the surface areas Sb and Sa of
the film before and after the transfer and show that the
difference ∆S = Sa − Sb is positive and increases as a
function of the distance h between the flat film and the
substrate.
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b e-mail: pawel@lps.u-psud.fr

In the calculation of the surface area of the transferred
film, one has to take into account two parts: the flat film of
radius r0 transferred on the substrate (its surface area is
obviously πr2

0) and the curved free-standing film spanned
between the rim of the hole and the surface of the sub-
strate (Fig. 3). We calculate the shape and the surface area
of this free film in two limits. In the limit of zero pressure,
the film has the shape of the minimal surface of revolu-
tion – the catenoid. In agreement with previous results of
Cryer and Steen [4] we show theoretically that for given
distance h, two catenoid-shaped films can be spanned be-
tween the hole and the substrate: one of them is stable and
the other one unstable. In Section 2 we show that both
types of catenoid can be realised experimentally. The sec-
ond limit we consider corresponds to a constant pressure
∆p such that the top of the spherical smectic bubble just
touches the substrate. In this case, the free film spanned
between the hole and the substrate has, after the transfer,
the shape of the surface of revolution of a constant mean
curvature. We calculate this shape and the corresponding
surface area numerically.

2 Experimental

2.1 Film transfer

The experimental set-up we used for the transfer of the
free-standing films was inspired by the one of Maclen-
nan (Fig. 1a). The smectic film is suspended on a circular
aperture of radius R open in the cover of a small tight
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Fig. 1. Experimental set-up: (a) for the film transfer, (b) for
the study of the half-catenoid, (c) for the study of the whole
catenoid.
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Fig. 2. Transfer process.

box. The film is drown using a razor blade which cut-
ting edge is wet with the liquid crystal. The razor blade
is moved slowly across the hole by means of a translation
stage. This operation is made under a reflecting micro-
scope in order to monitor the thickness and the texture
of the film. The pressure in the box is controlled simply
using a U -shaped tube filled partially with water. Tilting
of the tube displaces the water column in it and results
in a change of the pressure inside the box. The substrate
(a freshly cleaved mica sheet or a microscope cover glass)
is supported by a fork-shaped part attached to a transla-
tion stage which allows to control the distance h with the
accuracy of 0.02 mm.

The smectic liquid crystals used in experiments were
either the commercial mixture SCE4 (from BDH) possess-
ing the SmC∗ phase at room temperature or 8CB having
the SmA phase at room temperature. The first choice of
the mesophase was determined by the initial aim of our
AFM studies – detection of the topography of SmC∗ films
due to the distortion in the director field c. Such a dis-
torsion can occur spontaneously as it has been shown by
Maclennan [5] or by Demikhov and Stegemeyer [6].

2.1.1 First stage of the transfer

In order to transfer the film onto the substrate we used
two methods (Fig. 2). In the first one, the film is slightly
inflated by a small constant pressure ∆p0. Subsequently,
the substrate is slowly lowered using the translation stage
until it touches the top of the smectic bubble. The sec-
ond method is inverse: the distance h is kept fixed and
the pressure is raised slowly until the top of the in-
flated smectic film touches the substrate. Obviously, the
height h at which the contact between the smectic bubble
and the substrate is established depends on the pressure
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Fig. 3. Configuration resulting from the first stage of the
transfer.

∆p. This function ∆p(h) is calculated in Section 3
(Eqs. (6, 7)).

Once the first contact between the film and the sub-
strate is realised, the film adheres to the substrate ex-
tremely rapidly (in about a few milliseconds) and as a
result one obtains the configuration depicted in Figure 3:
a disc-shaped area of radius r0 of the substrate covered
with the transferred smectic film and a free-standing film
spanned between the substrate and the circular aperture.
Let us emphasise that after the first stage of the transfer,
a meniscus forms between the substrate and the free film.
It is well visible as a ring of radius r0 and of thickness ∆r
of about 0.1 mm. Due to the presence of this meniscus,
the contact angle between the free film and the substrate
is π/2. Knowing the contact angle, the radius R of circu-
lar aperture and the pressure ∆p, the shape of the free
film and, in particular, its radius r0 at the substrate are
calculated as a function of the distance h in Section 2.1.

2.1.2 Second stage of the transfer

It results from the theoretical analysis that the shape of
the free film depends on the distance h and the pressure
difference ∆p. For this reason, as mentioned already in
[2], the spreading of the film can be continued either by
rising the pressure ∆p or by decreasing the distance h. It
is important to note however that in this second stage of
the transfer process, the transferred film is much thicker
than the free film. Indeed, when the pressure ∆p or the
distance h undergo a step-like change, the radius r0 of
the meniscus increases slowly toward a new equilibrium
value. During this motion, the meniscus wets the clean
substrate and lefts behind a wetting film which thickness
depends now mainly on the structure and the velocity of
the meniscus.

2.1.3 Half-catenoid-shaped free films

In order to study in more details the motion of the menis-
cus we modified the set-up as follows (Fig. 1b). The box
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Fig. 4. Diameter of the transfered film 2r0 versus the dis-
tance h between the aperture and the substrate. The time laps
between measurements is of the order of a few seconds. The
hysteresis is due to the relaxation time.

with the circular aperture is replaced by a circular verti-
cal tube of diameter 1 cm. The upper end of the tube is
machined in order to obtain a sharp rim. This rim is wet
with a small amount of the liquid crystal and the substrate
plate is lowered until it touches the rim. In the absence
of the pressure, when the substrate is slowly raised up, a
half-catenoid- shaped film forms between the rim and the
substrate. The film is observed with a TV camera either
from the top or from the side. In the first case, one sees
the circular meniscus of radius r0 which connects the film
to the substrate. In the second case, the film profile r(z)
is well visible (see Fig. 7).

The radius r0 of the meniscus was measured as a func-
tion of the distance h. In this first experiment, the time
laps between consecutive measures was of the order of a
few seconds. The resulting plot r0 versus h is shown in
Figure 4. The first remarkable feature of the first plot is
the hysteresis: the values of the radius obtained during
the increase of the distance h are larger than those ob-
tained during the decrease of h. The difference ∆r0 grows
with h. The reason of this hysteresis is the dynamics of
the meniscus. When h undergoes a step-like change ∆h,
the meniscus evolves slowly toward its new equilibrium
value. As shown in Figure 6, the characteristic time of
this relaxation process is usually of the order of about ten
seconds but it grows with h. The divergence of the relax-
ation time is related to the second remarkable result of
this experiment; for distances h larger than h∗ = 3.3 mm,
the catenoid loses its stability. The corresponding critical
radius r∗0 is about 2.7 mm. In practice, the loss of the
stability means that if h is set at a value larger than h∗

and one waits long enough, the radius r0 of the catenoid
becomes less than r∗0 and goes to zero. As a result, the
free film is detached from the substrate. We found how-
ever that this collapse of the catenoid is not inevitable.
When the radius r0 gets smaller than r∗0 , one can decrease
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Fig. 5. Diameter of the transfered film 2r0 versus the dis-
tance h between the aperture and the substrate. The time laps
between measurements has been adjusted in order to get equi-
librium configuration of the meniscus. The points on the lower
branch correspond to the unstable form of the catenoid.
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Fig. 6. Relaxation process: motion of the meniscus on the
substrate plate after a change of the distance h.

rapidly the distance h and then, by a permanent (manual)
control of h, stabilise dynamically the catenoid. In such a
way we obtained a series of points located on the lower
branch of the plot in Figure 5. These points represent un-
stable states corresponding to a maximum of the energy
E(r0) of the free film with respect to variations of the ra-
dius r0. In spite of that, the free film in these unstable
states can always be considered as a minimal surface with
respect to all infinitesimal perturbations conserving the
radii R and r0. The points situated on the upper branch
of the plot in Figure 5 (the hysteresis is suppressed now
thanks to a sufficient time delay between measures) cor-
respond to the minimum of the film energy with respect
to variations of r0. In general, for each distance h < h∗,
two catenoids, one stable and the other one unstable, can

Fig. 7. Superposition of photographs of the stable and unsta-
ble forms of the catenoid corresponding to the same distance
h.
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Fig. 8. Diameter versus height measured for the whole
catenoid.

be spanned between the circular aperture and the sub-
strate. This is illustrated in Figure 7 showing a superpo-
sition of photographs of these stable and unstable forms
of the catenoid for h = 2 mm. The depth of the minimum
(stable states) and the height of the maximum (unstable
states) can be analysed qualitatively from the dynamical
behaviour. From the divergence of the relaxation time one
can deduce that the depth and height of these extrema de-
crease as a function of h and vanish at h = h∗, where, for
rf = r∗f , the function E(r0) has only an inflexion point of
zero slope. The divergence of the relaxation time in the
limit h → h∗ described above can be seen as a critical
slowing down of a diffusive mode. The mode correspond-
ing to changes in the radius r0 is diffusive because of the
viscous friction during the motion of the meniscus on the
substrate.

2.1.4 Catenoid-shaped free films

In the last series of experiments, we replaced the flat sub-
strate by a circular frame, identical to the lower one as
shown in Figure 1c. In this case, only the stable form of
the catenoid has been observed and its radius r0 at the
half-height h = H/2 was measured as a function of the
distance H between frames (Fig. 8). The unstable form
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Fig. 9. Typical AFM image of holes in a SCE4 film.

is now impossible to control manually because, in the ab-
sence of the viscous drag on the substrate plate, changes
in the radius r0 are very rapid and, in the case of the
stable form, they correspond to an oscillatory mode – the
fundamental eigenmode of vibrations of the minimal sur-
face. Its eigenfrequency is now expected to vanish in the
limit H/2→ h∗. The study of this soft mode is presented
in the accompanying paper [8].

2.2 AFM study of films transferred by the Maclennan
method

The AFM study of films transferred by the Maclennan
method was the initial aim of the present work. In partic-
ular, we were interested in the topography characteristic of
±2π disclinations. For this purpose, the films were drawn
under a polarising microscope and transferred (by the first

Fig. 10. Terraces on the bord of a hole in a film transferred
by the Maclennan method.

stage of the process under a constant pressure ∆p0) onto a
mica sheet when they presented several disclinations. The
thickness of free films before the transfer ranged between
5 and 30 layers. The mica sheets with the smectic films
were examined by means of the Nanoscope III atomic force
microscope.

The typical images are shown in Figures 9 and 10.
Unfortunately, we were unable to find on them any signa-
ture of the 2π disclinations. However, we remarked at once
that all transferred films contained a lot of small holes.
The depth of these holes was close to the thickness of the
transferred films and the lateral size of the order of several
tenths of microns. These holes are well visible in an optical
microscope so that one can make an estimate of their total
surface area which corresponds to about 5% of the area of
the transferred film. As it is shown in Figure 10, the edges
of holes have most of the time a terrace-like texture allow-
ing to count smectic layers one by one. It is important to
emphasise that this topography is characteristic of films
transferred by the first stage of the process and is not re-
lated to the subsequent evolution of the catenoid-shaped
film.

The most plausible explanation of the presence of these
holes in transferred films is that during the first stage of
the transfer process, the smectic films must, for geomet-
rical reasons, increase their surface area. Moreover, the
rate of the surface change dS/dt must be so high that
the transfer of molecules from the meniscus into the film
cannot compensate the increase in the film tension [1] re-
sulting from the positive change in its area. Consequently,
holes are nucleated in the film. In order to understand bet-
ter the mechanism of creation of the holes, we calculated
the change ∆S = Sa − Sb in the surface area of smectic
films as a function of the distance h between the circular
frame and the substrate. These results are presented in
the next section.
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3 Theoretical

3.1 Surfaces of constant mean curvature

The free film spanned between the circular frame and the
flat substrate has the shape of a surface of revolution that
can be parametrised as follows (Fig. 3):

r(z, ϕ) = [r(z) cosϕ, r(z) sinϕ, z]. (1)

The principal curvatures of such a surface are [7]

k1 = −

∣∣∣∣1 r′

0 r′′

∣∣∣∣
(1 + r′2)3/2

(2)

and

k2 =
1

r(1 + r′2)1/2
· (3)

The mean curvature of the free film is then

Mf =
k1 + k2

2
=

1 + r′2 − rr′′

2r(1 + r′2)3/2
· (4)

In the presence of the pressure ∆p inside the surface, its
equilibrium shape is given by the Laplace condition

Mf =
∆p

τ
(5)

where τ is the film tension. In experiments, the applied
pressure ∆p is such that the top of the spherical cup
touches the substrate. In these conditions, the mean cur-
vature Ms of the spherical cup, obtained from simple ge-
ometric considerations

Ms =
2h

R2 + h2
(6)

must satisfy the Laplace condition too

Ms =
∆p

τ
· (7)

By equating Mf and Ms, one gets finally the following
differential equation:

1 + r′2 − rr′′

2r(1 + r′2)3/2
=

2h

R2 + h2
(8)

ruling the shape of the free film.

3.2 Change in the surface area during the transfer
of films

The equation (8) has been solved numerically and the total
surface area Sa (the area of the circular transferred film
plus the area of the free film) has been calculated as a
function of the distance h (empty circles in the plot of
Fig. 11). We have also calculated the surface area Sb of
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Fig. 11. Comparison between the surface areas of the smectic
film before (Sb) and after (Sa) the first stage of the transfer.
Surfaces are calculated for the circular aperture of radius R =
5 mm.

the spherical cap touching the substrate (empty triangles
in the plot of Fig. 11). It is obvious from these two plots
that the difference between Sa and Sb increases with h.
As mentioned in Section 2, this change ∆S = Sa − Sb
in the surface area takes place in a few milliseconds and,
therefore, results in an increase of the film tension that
generates pores visible in AFM.

We extended our calculations of the surface area Sa to
the case of zero differential pressure. The corresponding
plot in Figure 11 (dots) has two branches corresponding
to the stable and unstable forms of the catenoid. Let us
remark that for a given distance h, the surface area Sa
is larger in the presence of the pressure ∆p then in the
absence of the pressure. This result is in agreement with
experimental results concerning the second stage of the
transfer process; when the pressure is increased, the sur-
face area as well as the radius r0 of the free film increase.
Obviously, the surface area πr2

0 of the substrate covered
with the liquid crystal increases too.

The shapes of the free-standing film created after the
first stage of the transfer process (∆p0 = const) have been
calculated for different values of the distance h. They are
shown in Figure 12. It is interesting to note that these
shapes evolve as a function of h. For h close to zero, the
free-standing film must obviously have a shape close to
the catenoid because the pressure ∆p0 goes to zero in the
limit h → 0. In this limit, the principal curvatures of the
free film are of opposite sign and their absolute values
are very close. When the distance h increases, the mean
curvature of the surface must increase in order to equili-
brate the pressure ∆p which grows as 2h/(R2 + h2). This
change in the mean curvature is mainly due to the varia-
tion of the curvature k1 which decreases and changes sign
for a certain threshold value hcyl of the distance between
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the substrate and the circular frame. In order to calcu-
late hcyl let us remark that for the cylindrical shape, the
generic function r(z) is constant and equal to R. The equa-
tion (8) becomes then

1

2R
=

2h

R2 + h2
· (9)

Its root

hcyl

R
= 2−

√
3 ≈ 0.268 (10)

corresponds precisely to the threshold distance hcyl.

3.3 shape of the catenoid

When there is no pressure difference ∆p between the two
sides of the free film, the right hand side of the equation
(8) equals to zero and there exists an analytic solution –
the catenoid:

r(z) = r0cosh

(
z

r0

)
· (11)

The parameter r0 represents here the minimal radius of
the catenoid at z = 0. In experiments with the free film
spanned between the circular aperture and the flat sub-
strate (where the contact angle is π/2), the free film re-
alises one half of the catenoid and r0 corresponds to the
radius of the catenoid at the substrate plate. For z = h,
the radius r(h) = R so that h and r0 are related:

R

r0
= cosh

(
h

r0

)
· (12)

120

100

80

60

40

20

0

 S
ur

fa
ce

 a
re

a 
(m

m2 )

43210

Distance h (mm)

unstable

stable

 radius of the aperture = 5 mm

Fig. 13. Surface area of the the stable and unstable forms of
the catenoid.

Using R as the unit length and introducing reduced vari-
ables ρ = r0/R and χ = H/R (h = H/2), this equation
can be written as:

χ = 2ρ arcch

(
1

ρ

)
· (13)

Using this function, continuous lines were plotted in Fig-
ures 4, 5 and 8. The function χ(ρ) is well defined in the
range 0 ≤ ρ ≤ 1. One has χ(ρ) = 0, for ρ1 = 0 and ρ2 = 1.
For ρ∗ = 0.5524, there is a maximum χ∗ = 1.3254. The
coordinates (ρ∗, χ∗) of this maximum correspond well to
the experimentally measures values r∗ = 2.75 mm and
h∗ = 3.3 mm. For 0 < χ < χ∗, there are two solutions ρ1

and ρ2 corresponding to the stable and unstable forms of
the catenoid.

It is interesting to calculate the corresponding surface
areas S1(h) and S2(h) and to compare them. Knowing the
shape r(z) of the surface (Eq. (11)) the function S(h) can
be calculated analytically as the integral:

S(h) =

∫ h

0

2πr
√

1 + r′2dz (14)

and represented in the parametric form:

S(r0) = πr2
0

{
arc sinh

[
sinh

(
h

r0

)]
+ cosh

(
h

r0

)
sinh

(
h

r0

)}
h(r0) = r0 arc cosh

(
R

r0

)
(15)

where r0 has to be varied between 0 and R. The plot
S(h) is shown in Figure 13. One remarks that for a given
distance h less than the critical one h∗ = χ∗R/2, the un-
stable form of the catenoid has the surface (the capillary
energy) larger than the stable form (due to the fact that
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the contact angle at the substrate is π/2, the area πr2
0

of the surface wetted by the LC does not matter in this
comparison of the surface energies). Another interesting
feature of this plot is that slopes dS/dh are positive for
the two branches. It means that the substrate plate is al-
ways attracted toward the aperture. This is not surprising
because the force of interaction dE/dh = τ(dS/dh) result-
ing from the slope dS/dh, must be equal to the tension of
the film τ multiplied by the perimeter 2πr0 of the film at
the substrate. Therefore, one must have:

2πr0 =
dS

dh
· (16)

By differentiating numerically the calculated function
S(h) shown in Figure 13, we obtained a plot (within the
factor 2π) identical with r0(h) shown in Figure 4.

4 Discussion and conclusions

We have shown here that during the first stage of the
Maclennan transfer process, the total surface area of the
smectic film increases by an amount ∆S that depends
on the distance between the frame and the substrate. As
a result, a number of microscopic holes are generated in
the transferred film, which thickness, everywhere else, is
uniform and corresponds to the one of the free film before
the transfer. The number of holes should be reduced by
decreasing as much as possible the distance h between the
free film and the substrate because ∆S goes linearly to
zero with h.

For a given surface area variation ∆S, it is not clear
however, how the rate dS/dt of the surface change evolves
with time. Indeed, this first stage of the transfer process
takes place in a few milliseconds so that in order to resolve
its dynamics experimentally a fast enough camera should
be used. From theoretical point of view, the dynamics of
the transfer process seems quite complex. It is driven by
forces of interaction between the free film and the sub-
strate which are unknown so far. It also involves complex
flows in air that must be expulsed from the space between
the film and the substrate.

During the study of shapes of free films spanned be-
tween the substrate and the frame, we have found that
in the absence of pressure, two catenoid-like shapes are
possible: one stable and the other one unstable. Due to
the presence of the meniscus at the substrate plate, the
contact angle between the film and the substrate is π/2.

Let us note that this configuration is different from
the one of Debregas and Brochard-Wyart [9] who recently

studied shapes of a liquid bridge formed between a free
surface of a liquid and a flat substrate parallel to it. In-
deed, in experiments presented in [9], the surface of the
bridge is submitted to the hydrostatic pressure varying
linearly with the height z, while in our case the pressure
is independent of z (zero or constant). This difference is
crucial in equations ruling the shape of the surface (Eq. (2)
in [9] and Eq. (8) here) where the Laplace force due to the
local mean curvature is compared with the local pressure.
The second difference comes from different boundary con-
ditions, in particular, at the substrate plate where, in the
case of reference [9] the contact angle is in general differ-
ent from π/2 while in our experiments it is π/2 due to the
presence of the meniscus.

We have shown that thanks to the viscous drag of the
meniscus on the substrate, the relaxation time involved
in changes of the catenoid parameters is so long (several
seconds) that the unstable form of the catenoid can be
maintained dynamically by a suitable regulation of the
distance h. This is in contrast with the case of a catenoid
spanned between two ring-shaped frames where the relax-
ation time is so short that the unstable form predicted
theoretically has never been observed in experiments.

We are grateful to Martine Ben Amar and Patricio da Silva for
useful discussions on the geometry and dynamics of minimal
surfaces.
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